Regular scanner vs Lex

Jesus Alvarez

Abstract— This paper will try to determine if the use of lex
is faster than a ¢ code implementation for a basic scanner

I. INTRODUCTION

When trying to create a compiler one of the first steps to
be able to make one is to generate a lexical analyzer which
purpose is to scan through an input set of characters and be
able to classify them.

II. PROBLEM

While creating a basic scanner is quite simple in a ¢ code,
because the scanner is one of the fundamentals and it has to
interpret the input as whole, optimization is something that
is very critical in this part as a little bit of difference in time
can affect performance of the compiler in production use.
Lex offers a way to generate a scanner that can do the same
as a ¢ code and more by using regular expressions. The main
issue to discuss is if lex really offers an advantage over a
plain c code.

ITII. SOLUTION

In order to prove this it is necessary to test the time it
takes to process a file in which both do the same level of
analysis and abstraction. The analyzed input will be a set of
randomly generated code snippets that are analyzed by both.
Time command will be used to know how much total time
as well as CPU time (user + sys) it takes for each one to
execute with the same input.

IV. RESULTS

A. Execution with prints to console
Prints of all abstraction

6.52 6.782

@~

wn

time in seconds
w o

X

1522 1472

€ scanner lex

-

El

mreal Wuser+sys

B. Execution with prints to console without line breaks
Prints of all abstraction except \n

166
15 1531

time in seconds
o o "
ook e o

=
s

0205 0.228

Cscanner lex

=
[~

£l

Wreal Wuser+sys

C. Execution with no prints
No prints just abstraction

0141 0.143

0.098

0.083

time in seconds
o

=
=]
&

cscanner lex

Wreal Wuser+sys

V. CONCLUSIONS

As seen in the graphics we can conclude that the time
difference of lex and a c code is almost non-existent to the
point where lex takes a tiny amount of time more. While this
is true the power and ease of use of lex makes it a better
option to use especially when doing more than a scanner as
using it paired with YACC allows to develop a more efficient
basis for the compiler than doing it all in c.

REFERENCES

[1] Hubert, B. (2004, September 20). Lex and YACC primer/HOWTO.
Retrieved February 23, 2019, from https://ds9a.nl/lex-yacc/cvs/lex-
yacc-howto.html



